Materials Science Division
Materials for Energy and Climate Security Group
We are a diverse group of chemists, electrochemists, materials scientists, and chemical engineers who recognize the essential role that materials will play as we strive to develop technologies to help meet our energy, resource, and climate goals.
Our group sits within the Materials Science Division and exists to create connections, share opportunities, mentor and learn from each other, and facilitate teamwork in order to address the enormity of energy and climate security challenges that impact our nation and our world.
The goals and applications of our research are to reduce emissions and remove carbon dioxide from the atmosphere, enable water purification and resource recovery, and understand material degradation and aging. We focus on studying energy storage materials, carbon dioxide capture and conversion, direct air capture materials and processes, and gas and liquid separation technologies. Our toolkit includes advanced manufacturing, polymer science, sorption and surface science, degradation science, advanced characterization, and electrocatalysis.
In the news
Our research and capabilities
- Carbon management
- Energy storage
- Advanced materials and manufacturing
- Advanced characterization and degradation science
- Systems modeling and analysis
Carbon management

We use 3D printing and advanced manufacturing to design and create novel electrochemical reactors. These electrolyzers are used for a wide range of applications and reactions, including turning air into commercial-grade fertilizer and converting waste CO2 into valuable products and fuels.
Carbon management technologies aim to address carbon dioxide (CO2) emissions and reduce atmospheric CO2 concentration through a combination of strategies:
- Preventing it from entering the atmosphere from point sources of emissions;
- Removing it directly from the atmosphere for safe storage in geologic formations;
- Converting it into chemicals and fuels to replace petroleum-derived products.
Our group develops many types of carbon management technologies, including:
- Capture of CO2 from point sources such as biogas of power plant flue gas;
- Removal of CO2 directly from the atmosphere using engineered systems, known as direct air capture (DAC);
- Electrochemical and thermochemical conversion of CO2 into products such as commodity chemicals and carbon-neutral fuels.
Our group works at the forefront of carbon management across technology readiness levels, from fundamental science investigations of materials evolution mechanisms, to the development and scale-up of novel reactors and materials, to process-level design and implementation of advanced adsorbents, solvents, and reactors.
At every stage of development, we use our expertise in materials science, chemistry, chemical engineering, and advanced manufacturing to improve performance of carbon management materials and technologies.
Our multidisciplinary projects rely upon collaborations with not only our colleagues at LLNL but also our partners at other national laboratories and in industry and academia. We work with colleagues in quantum simulations and multiscale modeling, computational engineering and optimization, and materials engineering and manufacturing.
Energy storage

Our group develops next-generation batteries for electric vehicle and grid storage applications. We design novel processing approaches for solid-state batteries, with a focus on improving solid/solid interfaces, ion transport properties, and long-term cyclability. To achieve these objectives, we:
- Create unique electrode architectures via 3D printing and laser patterning techniques, which reduce processing times and side reactions and improve the cyclability of high-capacity lithium metal anodes by incorporating conductive scaffolds;
- Develop a high-throughput screening capability to identify new solid electrolyte candidates;
- Design low-cost iron redox flow batteries for scalable grid storage.
We use advanced characterization and multiscale modeling to help understand and predict the effects of different materials, geometries, and processing parameters on battery chemistry, microstructure, and electrochemical performance to accelerate the development of these new energy storage technologies.
Advanced materials and manufacturing

Shape memory polymers are stimuli responsive materials with programmable recovery from a deformed state. Volumetric additive manufacturing of photoresins produces structures with nearly full shape recovery, such as self-standing tripod and actuating three-arm gripper structures.
Our group benefits from a strong polymer chemistry and additive manufacturing (3D printing) background. We develop new monomers and formulations to design smart materials, on-demand degradable polymers for upcycling, and perform multi-material additive manufacturing.
Our new synthetic materials are directly applicable to LLNL core competencies in additive manufacturing, degradation science, and high-energy-density science. These new innovations are part of many internal collaborations with colleagues in computational engineering, within the Global Security Directorate, and at the National Ignition Facility.
Advanced characterization and degradation science

Operando synchrotron x-ray absorption spectroscopy probes the oxidation state of transition metal oxide catalysts.
Advanced characterization tools can reveal important phenomena in complex systems with high chemical and physical specificity. To understand the dynamics and degradation modes of functional materials, our group partners with scientists at the Department of Energy’s Office of Science user facilities—such as the Stanford Synchrotron Radiation Lightsource—to conduct in situ characterization experiments. We’ve leveraged advanced manufacturing approaches such as 3D printing to rapidly prototype reactors that enable probing of functional materials under realistic operating conditions.
Systems modeling and analysis

The “Getting to Neutral: Options for Negative Carbon Emissions in California” report provides an assessment of negative emissions pathways—ones that physically remove CO2 from the atmosphere—that can help California achieve carbon neutrality.
We use process modeling, technoeconomic analysis, and lifecycle analysis to understand how the development of new materials, reactors, and processes can make an impact when deployed at large scale. In turn, systems analysis informs our materials development targets to make the greatest impact. We focus on systems modeling and analysis of carbon and energy-related technologies. Notable examples include:
- Electrochemical CO2 reduction to ethylene;
- Regional assessments of options for implementing negative emissions technologies, including biomass with carbon removal and storage (BiCRS) and direct air capture (DAC), among others.
Our detailed analyses rely on collaborations with colleagues within LLNL in computational engineering, energy systems analysis, and the Global Security Directorate.
Our team
Leadership
Team
Group members
Team
Our publications
Influence of residual chlorine on Ru/TiO2 active sites during CO2 methanation
Appl. Catal. A: General
J. M. Crawford, B. Petel, M. J. Rasmussen, T. Ludwig, E. M. Miller, S. Halingstad, S. A. Akhade, S. H. Pang, M. Yung
Chem. Comm.
S. Li, M. F. Calegari Andrade, A. J. Varni, G. A. Russell-Parks, W. A. Braunecker, E. Hunter-Sellars, M. A. T. Marple, S. H. Pang
J. Phys. Chem. C
G. A. Russell-Parks, N. Leick, M. A. T. Marple, N. A. Strange, B. G. Trewyn, S. H. Pang, W. A. Braunecker
Energy Environ. Sci.
N. C. Ellebracht, P. Roy, T. Moore, A. E. Gongora, D. I. Oyarzun, J. K. Stolaroff, D. T. Nguyen
Reactive CO2 capture: A path forward for process integration in carbon management
Joule
M. C. Freyman, Z. Huang, D. Ravikumar, E. B. Duoss, Y. Li, S. E. Baker, S. H. Pang, J. A. Schaidle
Thermal modulation of reaction equilibria controls mass transfer in CO2-binding organic liquids
Energy Environ. Sci.
T. Moore, A. J. Varni, S. H. Pang, S. A. Akhade, S. Li, D. T. Nguyen, J. K. Stolaroff
ChemSusChem
S. Li, M. R. Cerón, H. V. Eshelman, A. J. Varni, A. Maiti S. A. Akhade, S. H. Pang
Bridging Fundamental Science and Applied Science to Accelerate CO2 Electrolyzer Scale up
Curr. Opin. Electrochem.
M. Goldman, A. Prajapati, E. B. Duoss, S. E. Baker, C. Hahn
Joule
T. Moore, D. I. Oyarzun, W. Li, T. Y. Lin, M. Goldman, A. A. Wong, S. A. Jaffer, A. Sarkar, S. E. Baker, E. B. Duoss, C. Hahn
Fluorescent Probe of Aminopolymer Mobility in Nanoconfined Direct Air CO2 Capture Supports
J. Phys. Chem. C
H. Correll, N. Leick, R. E. Mow, G. A. Russell-Parks, S. H. Pang, T. Gennett, W. A. Braunecker
Volatile Products of the Autoxidation of Poly(ethylenimine) in CO2 Sorbents
J. Phys. Chem. C
J. Racicot, S. Li, A. Clabaugh, C. Hertz, S. A. Akhade, E. Ping, S. H. Pang, M. A. Sakwa-Novak
J. Mater. Chem. A
J. A. Hammons, J. A. Espitia, E. Ramos, R. Shi, F. Meisenkothen, M. Wood, M. R. Céron, J. Ye
Developing Reactors for Electrifying Bio-Methanation: A Perspective from Bio-Electrochemistry
Sustainable Energy Fuels
B. S. Jayathilake, S. Chandrasekaran, M. C. Freyman, J. S. Deutzmann, F. Kracke, A. M. Spormann, Z. Huang, L. Tao, S. H. Pang, S. E. Baker
Carbon Negative by 2030: CO2 Removal Options for an Early Corporate Buyer
LLNL
B. Mordick Schmidt, J. K. Stolaroff, S. E. Baker, N. C. Ellebracht, W. Kirkendall, A. J. Simon, G. Peridas, E. W. Slessarev, J. Pett-Ridge, S. H. Pang, R. D. Aines, M. Langholtz
Analyzing Production Rate and Carbon Utilization Trade-offs in CO2RR Electrolyzers
ACS Energy Lett.
S. A. Hawks, V. E. Ehlinger, T. Moore, E. B. Duoss, V. A. Beck, A. Z. Weber, S. E. Baker
Volumetric additive manufacturing of shape memory polymers
Polym. Chem.
J. J. Schwartz, D. H. Porcincula, C. C. Cook, E. J. Fong, M. Shusteff
Transparent Polyimide Aerogels: Controlled Porosity via Minimizing Phase Separation
Appl. Polym. Mater.
M. Y. Mettry, A. Lighty, J. A. Hammons, D. R. Malone, K. M. Bertsch, T. M. Fears
Electrolyte-Guided Design of Electroreductive CO Coupling on Copper Surfaces
ACS Appl. Energy Mater.
S. A. Akhade, B. S. Jayathilake, S. E. Weitzner, H. V. Eshelman, J. Hamilton, J. T. Feaster, D. W. Wakerley, L. Wang, S. Lamaison, D. U. Lee, C. Hahn, T. F. Jaramillo, E. B. Duoss, S. E. Baker, J. B. Varley
Advanced Manufacturing for Electrosynthesis of Fuels and Chemicals from CO2
Energy Environ. Sci.
D. Corral, J. T. Feaster, S. Sobhani, J. R. DeOtte, D. U. Lee, A. A. Wong, J. Hamilton, V. A. Beck, A. Sarkar, C. Hahn, T. F. Jaramillo, S. E. Baker, E. B. Duoss
ACS Sustainable Chem. Eng.
W. Li, J. T. Feaster, S. A. Akhade, J. T. Davis, A. A. Wong, V. A. Beck, J. B. Varley, S. A. Hawks, M. Stadermann, C. Hahn, R. D. Aines, E. B. Duoss, S. E. Baker
Chem. Mater.
A. T. Landers, H. Peng, D. M. Koshy, S. H. Lee, J. T. Feaster, J. C. Lin, J. W. Beeman, D. Higgins, J. Yano, W. S. Drisdell, R. C. Davis, M. Bajdich, F. Abild-Pedersen, A. Mehta, T. F. Jaramillo, C. Hahn
J. Am. Chem. Soc.
S. H. Lee, J. Lin, M. Farmand, A. T. Landers, J. T. Feaster, J. Beeman, Y. Ye, J. Yano, A. Mehta, R. Davis, T. F. Jaramillo, C. Hahn, W. Drisdell
J. Power Sources
M. Wood, X. Gao, R. Shi, T. W. Heo, J. A. Espitia, E. B. Duoss, B. C. Wood, J. Ye
Towards understanding particle rigid-body motion during solid-state sintering
J. Eur. Ceram. Soc.
R. Shi, R. Wood, T. W. Heo, B. C. Wood, J. Ye
npj Comput. Mater.
T. W. Heo, A. Grieder, B. Wang, M. Wood, T. Hsu, S. A. Akhade, L. F. Wan, L. Q. Chen, N. Adelstein, B. C. Wood
J. Power Sources
M. Wood, J. Li, Z. Du, C. Daniel, A. R. Dunlop, B. J. Polzin, A. N. Jansen, G. K. Krumdick, D. L. Wood
Nature
N. A. Dudukovic, E. J. Fong, H. B. Gemeda, J. R. DeOtte, M. R. Céron, B. D. Moran, J. T. Davis, S. E. Baker, E. B. Duoss
Refractive index matched polymeric and preceramic resins for height-scalable two-photon lithography
RSC Adv.
M. Mettry, M. A. Worthington, B. Au, J. B. Forien, S. Chandrasekaran, N. A. Heth, J. J. Schwartz, S. Liang, W. Smith, J. Biener, S. K. Saha, J. S. Oakdale
Transport Cost for Carbon Removal Projects with Biomass and CO2 Storage
Front. Energy Res.
J. K. Stolaroff, S. H. Pang, W. Li, W. G. Kirkendall, H. M. Goldstein, R. D. Aines, S. E. Baker
Three-Dimensional Printable Sodium Carbonate Composite Sorbents for Efficient Biogas Upgrading
Environ. Sci. Technol.
M. Murialdo, H. M. Goldstein, J. K. Stolaroff, D. T. Nguyen, S. T. McCoy, W. L. Bourcier, M. R. Céron, J. M. Knipe, M. A. Worthington, M. M. Smith, R. D. Aines, S. E. Baker
Highly Tunable Thiol-Ene Photoresins for Volumetric Additive Manufacturing
Adv. Mater.
C. C. Cook, E. J. Fong, J. J. Schwartz, D. H. Porcincula, A. C. Kaczmarek, J. S. Oakdale, B. D. Moran, K. M. Champley, C. M. Rackson, A. Muralidharan, R. R. McLeod, M. Shusteff
Getting to Neutral: Options for Negative Carbon Emissions in California
LLNL
S. B. Baker, J. K. Stolaroff, G. Peridas, S. H. Pang, H. M. Goldstein, F. R. Lucci, W. Li, E. W. Slessarev, J. Pett-Ridge, F. J. Ryerson, J. L. Wagoner, W. Kirkendall, R. D. Aines, D. L. Sanchez, B. Cabiyo, J. Baker, S. T. McCoy, S. Uden, R. Runnebaum, J. Wilcox, P. C. Psarras, H. Pilorgé, N. McQueen, D. Maynard, C. McCormick
On the Network Topology of Crosslinked Acrylate Photopolymers: A Molecular Dynamics Case Study
J. Phys. Chem. B
J. J. Karnes, T. H. Weisgraber, J. S. Oakdale, M. Mettry, M. Shusteff, J. Biener
3D Printed Polymer Composites for CO2 Capture
Ind. Eng. Chem. Res.
D. T. Nguyen, M. Murialdo, K. M. Hornbostel, S. H. Pang, C. Ye, W. L. Smith, S. E. Baker, W. L. Bourcier, J. M. Knipe, R. D. Aines, J. K. Stolaroff
Direct Writing of Tunable Living Inks for Bioprocess Intensification
Nano Lett.
F. Qian, C. Zhu, J. M. Knipe, S. Ruelas, J. K. Stolaroff, J. R. De Otte, E. B. Duoss, C. M. Spadaccini, C. A. Henard, M. T. Guarnieri, S. E. Baker
Scalable submicrometer additive manufacturing
Science
S. K. Saha, D. Wang, V. H. Nguyen, Y. Chang, J. S. Oakdale, S. C. Chen